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Summary

A physical model of the hybridization of labelled target cRNA to short oligonucleotide probes

at the surface of microarray chips is presented. The model is based on competing processes of

chemical adsorption and desorption and includes the effects of non-specific hybridization. The

adsorption process is modelled as a rate determining nucleation step involving a small number

of base pairs, followed by a rapid ‘zipping up’ in which remaining base pairs bind. The model

correctly predicts a hyperbolic Langmuir isotherm, consistent with data from the Affymetrix

HG-U95A Latin Square spike-in experiment, and explains the differing responses of perfect

match and mismatch features at saturation concentrations. A formula relating perfect match

and mismatch responses in terms of duplex binding energies is also given.

1. Introduction

Oligonucleotide microarrays are designed to enable the evaluation of simultaneous ex-
pression of large numbers of genes in prepared messenger RNA samples. Details of the
technology and the design and manufacture of Affymetrix GeneChip arrays, the focus
of this paper, can be found in the review of Nguyen et al. (2002) or at the Affymetrix
website http://www.affymetrix.com/technology/index.affx.

In the manufacture of Affymetrix arrays, single strand DNA probes, 25 bases in length
are synthesized base by base onto a quartz substrate using a photolithographic process.
They are attached to the substrate via short covalently bonded linker molecules at a
separation of the order of 10 nanometres. A microarray chip surface is divided into
some hundreds of thousands of regions called features, each about 20 microns square, the
single strand DNA probes within each feature being synthesized to a specific nucleotide
sequence.

A key step in the process of gene detection with microarrays in the laboratory is
the hybridization of RNA target molecules fractionated to lengths of typically 50 to
200 bases onto the single strand DNA probes. The density of hybridized probe-target
duplexes in each feature is detected via intensity measurements of fluorescent dye attached
to the target RNA molecules. Each gene or EST is represented by a set of 11 to 16
pairs of features using sequences selected for their predicted hybridization properties
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and specificity to the target gene. The first element of the pair, termed the perfect
match (PM), is designed to be an exact match to the target sequence, while the second
element, the mismatch (MM), is identical except for the middle base being replaced by
its complement.

In this paper we propose a physical model of the hybridization process based on
Langmuir adsorption theory. A number of previous studies have demonstrated the appro-
priateness of Langmuir adsorption theory for understanding probe-target hybridization
at the surface of microarrays. Experimental work includes that of Nelson et al. (2001),
Peterson et al. (2001), Peterson et al. (2002) and Dai et al. (2002). Analyses which have
sought to match Langmuir adsorption isotherms with data from an Affymetrix spike-in ex-
periment include those of Held et al. (2003), Hekstra et al. (2003), Lemon et al. (2003)
and Burden et al. (submitted for publication). The ultimate aim of such work is to
establish a functional relationship between measured fluorescence intensities and under-
lying target concentration parameterized by known physical properties such as probe base
sequences. If such a relationship could be established, it would offer the possibility of
an absolute measure of RNA target concentration, as opposed to an arbitrarily defined
‘expression measure’. A necessary ingredient in establishing this relationship is a model
which accurately describes the physical chemistry of the hybridization process.

The novel aspect of our model is that it acknowledges that hybridization of probes
and targets to form duplexes is a two step process: an initial rate-determining nucleation
step involving two or three bases, followed by a rapid ‘zipping up’ step in which most,
but not necessarily all, of the remaining bases bind (Cantor and Schimmel, 1980). In
developing our model we make use of the differing responses of PM and MM features to
known spiked-in concentrations of target RNA. The intended purpose of the mismatch
feature, as stated in the manufacturer’s webpage, is to allow for the subtraction of signals
caused by non-specific cross hybridization (Affymetrix Inc., 2002). In practice, however,
there are problems with using the MM signals for this purpose (Irizarry et al., 2003).
Rather than trying to interpret MM signals as a measure of non-specific hybridization,
we instead view MM features simply as less responsive versions of the PM features. The
difference between PM and MM probe signals can then be exploited as the result a single,
well controlled change in one of the many parameters influencing the complicated process
of hybridization. From this perspective one can obtain powerful insights into the physics
and chemistry of hybridization at the microarray surface.

Langmuir adsorption theory is based on an assumption that there are two compet-
ing processes driving hybridization: adsorption, i.e. the binding of target molecules to
immobilized probes to form duplexes, and desorption, i.e. the reverse process of du-
plexes dissociating into separate probes and target molecules. Both these processes are
determined by chemical rate constants which depend on a number of factors including
activation energies and temperature. If the adsorption rate is mainly determined by a
nucleation step which, in the majority of cases, is remote from the middle base, adsorp-
tion rate constants will differ very little between elements of a (PM,MM) pair. On the
other hand, desorption rate constants are affected by duplex binding energies and will
be the main cause of difference between PM and MM responses. This picture of hy-
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bridization has been borne out in the context of spotted microarrays by the observations
of Dai et al. (2002). From the model proposed here we attempt to relate the differing
responses of PM and MM features to the difference in binding energies between PM and
MM duplexes.

In Section 2 we review current adsorption models including the model of Hekstra et al. (2003)
which includes the effects of non-specific hybridization. This model predicts a hyperbolic
response function, in good agreement with data from spike-in experiments. However, as
we point out in Section 3, it is unable to explain the observed difference between PM and
MM signals at saturation concentrations. In Section 4 our modified Langmuir model,
which includes the effects non-specific hybridization and nucleation and partial zipper-
ing in the forward adsorption process is presented. The model maintains a hyperbolic
response function and also correctly predicts that an MM feature will saturate with a
lower intensity signal than its PM partner. In Section 5 we derive a relationship between
the response curves of PM and MM features and the free energy difference between PM
and MM duplexes, and compare the relationship with experimental data. Conclusions
are drawn in Section 6.

2. The Langmuir isotherm model

Adsorption models of microarrays generally lead to a hyperbolic response function, or
equilibrium Langmuir isotherm, relating RNA target concentration x to a measured equi-
librium fluorescence intensity y, namely

y = y0 + b
x

x + K
. (1)

The isotherm is defined by three parameters: y0 is the measured background intensity
at zero target concentration, b is the saturation intensity above background at infinite
target concentration, and K is the target concentration required to reach half saturation.
The physical origins of these parameters will be discussed in detail below.

Recently we have carried out an extensive statistical analysis (Burden et al., submitted
for publication) of fits of the hyperbolic response function to publicly available data from
the Affymetrix Human HG-U95A Latin Square spike-in experiment
(http://www.affymetrix.com/support/technical/sample data). In this experiment genes
were spiked in at cyclic permutations of the set of known concentrations, together with a
background of cRNA extracted from human pancreas. The data consists of fluorescence
intensity values from a set of 14 probesets corresponding to 14 separate genes, each
containing 16 probe pairs. For each probeset a set of fluorescence intensity values are
obtained for the 14 spiked-in concentrations (0, 0.25, 0.5, 1, 2, 4, ..., 1024) pM. The
experiment was replicated three times using microarray chips from different wafers. In
common with previous analyses of this data, our study concentrated on data from 12 of
the 14 genes, omitting data from two defective genes.

In Fig 1 we show fits of Eq. (1) to fluorescence intensity data from the 16 PM and
MM features corresponding to one of the 12 genes. These fits were estimated using a
generalized linear model assuming the data at each spike-in concentration for each probe
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sequence to be drawn from a Gamma distribution. The behaviour of this gene is typical
of all 12 genes considered. Our findings are summarised as follows:

1. Measured fluorescence values can be approximated by a Gamma distribution with
mean given by Eq. (1) and constant coefficient of variation, here ≈ 0.17,

2. The equilibrium isotherm Eq. (1) tracks fold changes from both PM and MM probes
over the range of spiked-in concentrations from < 1pM to > 1000pM,

3. All three parameters y0, b and K are probe sequence dependent (in contrast with
the findings of Held et al. (2003)),

4. MM features invariably saturate at a lower asymptotic intensity y0 + b than their
PM counterparts.

The Langmuir asdorption model is based on an assumption that the hybridization
process is driven by competing processes of adsorption and desorption

Probe + Target ⇀↽ Duplex. (2)

Herein we shall always use the word ‘probe’ to indicate single strand DNA immobilised
on the microarray, ‘target’ to indicate RNA in solution and ‘duplex’ to indicate a bound
probe-target pair.

2.1 Naive Langmuir model without non-specific hybridization

We begin with a description of the simplest version of the Langmuir adsorption the-
ory (Dai et al., 2002; Held et al., 2003). Let the fraction of probes within a feature which
have formed duplexes by time t since the beginning of hybridization be θ(t). In the sim-
plest form of the adsorption model the forward adsorption reaction is assumed to occur
at a rate kfx(1 − θ(t)), proportional to target concentration x and fraction (1 − θ(t)) of
unoccupied probe sites. The backward desorption reaction is assumed to occur at a rate
kbθ(t), proportional to the fraction of occupied probe sites. kf and kb are the forward
and backward reaction rates respectively. The target concentration x is assumed not to
change significantly during hybridization. The fraction of occupied probe sites θ(t) at
time t is therefore given by the differential equation

dθ

dt
= kfx(1 − θ) − kbθ. (3)

Setting dθ/dt = 0 gives the equilibrium isotherm

θ =
x

x + KS
, (4)

where KS = kb/kf . Setting y to be the measured fluorescence intensity and assuming the
intensity above the physical background value a at zero concentration to be proportional
to θ, we arrive at the Langmuir isotherm

y = a + bSθ = a + bS
x

x + KS
, (5)

which takes the form of Eq. (1). The subscript S indicates parameters appropriate to
‘specific’ hybridization, as opposed to non-specific hybridization, discussed below.
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Figure 1. Fits of Eq. (1) to fluorescence intensity data for the 16 PM (black) and 16
MM (red) features of the gene 37777 at probeset of the Affymetrix spike-in experiment.
Concentrations (horizontal axes) are in picomolar and fluorescence intensities (vertical
axes) are in the arbitrary units used in Affymetrix .cel files. The fit to MM probe No. 3
gave unphysical negative values to the parameters K and b and is not shown.
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2.2 Naive Langmuir model with non-specific hybridization

Hekstra et al. (2003) determine changes to the Langmuir parameters caused by non-
specific hybridization from a second target species. It is straightforward to extend their
results to any number of non-specific species. Herein we define ‘specific’ to mean PM
specific. All other hybridization will be referred to as ‘non-specific’.

Let the concentration of non-specific species i be zi, i = 1, 2, . . ., the corresponding
forward and backward reaction rates be kfi and kbi respectively, and the fraction of probe
sites occupied by the ith non-specific species be φi. The kinetic equations are then

dθ

dt
= kfx(1 − θ −

∑

j

φj) − kbθ, (6)

dφi

dt
= kfizi(1 − θ −

∑

j

φj) − kbiφi. (7)

At equilibrium, setting dθ/dt = dφ/dt = 0 and defining KS = kb/kf , Ki = kbi/kfi gives

θ =
x/KS

1 + x/KS +
∑

i zi/Ki

φi =
zi/Ki

1 + x/KS +
∑

j zj/Kj
. (8)

Introducing proportionality constants bi for the non-specific hybridizations analogous to
the bS specified previously, the measured fluorescence intensity is given by

y(x) = a + bSθ +
∑

i

biφi (9)

= y0 + b
x

x + K
, (10)

where

y0 = a + A, (11)

b = bS − A, (12)

K = KSB, (13)

and

A =
1

B

∑

i

bizi

Ki
, (14)

B = 1 +
∑

i

zi

Ki
. (15)

The effect of non-specific hybridization is to maintain the hyperbolic form Eq. (1) while
amending the isotherm parameters y0, b and K. The purpose of Eqs. (11) to (15) is to
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relate the estimated isotherm parameters to the underlying physical parameters: a (the
physical background value in the absence of any hybridization), bS and bi (proportionality
constants relating the incremental change in measured intensity to an incremental change
in duplex fraction for the ‘specific’ and ‘non-specific’ hybridizations respectively) and kf ,
kb, kfi and kbi (chemical reaction rate constants), given a set of non-specific background
target concentrations zi. The parameters bS and bi are a measure of the amount of
fluorescent light emitted per hybridized target molecule. Fluorescent dye is bound only
to the target molecules (in fact only to U and C bases), so bS and bi can only be functions
of specific and non-specific target sequences, and not probe sequences.

3. Inconsistency of the naive model with observed PM/MM saturation in-
tensities

In this section we argue that, if the Hekstra model with non-specific hybridization leading
to the form given by Eqs. (6) to (15) is assumed, we are led inescapably to a conclusion
that the PM and MM intensity measurements for a given probe pair must saturate at the
same asymptotic intensity value, in contradiction with the observed fits to the Affymetrix
spike-in experiment.

Consider two neighbouring features on a microarray, one PM and one MM, their
probe sequences differing only by the middle base. Note that, in this paper, we define
the word ‘specific’ to mean those target RNA which are exact complements to the PM
sequence, even when dealing with the MM feature. In what follows this definition will
prove useful given that, for most probe pairs, the dominant part of the MM signal at high
spike-in concentrations in the Affymetrix experiment appears to come from hybridization
of spiked-in target RNAs complementary to the PM sequence (see Fig. 1 for instance).
Parameters relating to the PM and MM features will be indicated by superscripts PM
and MM respectively.

Although the sum occurring in Eqs. (14) and (15) will be over the same set of non-
specific targets for PM as for MM, one can expect AMM 6= APM since in general KMM

i 6=
KPM

i . Considering the asymptotic intensities at high concentration, however, Eqs. (10)
to (12) imply that, under the Hekstra model, the non-specific hybridization effects cancel
out:

yMM(∞) = yMM
0 + bMM = a + bS,

yPM(∞) = yPM
0 + bPM = a + bS.

(16)

An essential step in this argument is the claim that the parameters a and bS do not
differ between intensity measurements from neighbouring PM and MM features. For
the physical background a this is clearly a reasonable assumption: physical properties
of the chip in the absence of any hybridization, such as reflectance, are unlikely to vary
significantly over a distance of a few microns. For the parameter bS the argument is
more subtle. Recall that bS is a function of the amount of fluorescent light emitted per
hybridized specific target RNA molecule, and as such is a function of the target sequence
only, and not the probe sequence. By our current definition of ‘specific’ this is the same

sequence for PM and MM, and so bS is common to both. The Hekstra model formulated
above then necessarily entails that yMM

0 + bMM = yPM
0 + bPM, in gross contradiction with
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the values of y0, and b obtained by fitting the spike-in data.
The source of the problem is that the equilibrium solution of the model leading to the

rate equations (6) and (7) entails that at sufficiently high specific target concentration,
all probes form duplexes: as x → ∞, θ → 1. That is, all probes in the feature form
duplexes if saturated with enough specific target, even in the case of the MM feature. In
practice however, this is clearly not true: for instance if the hybridization were carried
out at the duplex melting temperature, then by definition θ would be one half.

This problem has been recognised previously in the context of the naive Langmuir
model without non-specific hybridization by Peterson et al. (2002), who explain their
experimental data by invoking a Sips isotherm to explain a lower MM response curve at
high target concentrations. The Sips isotherm (Sips, 1948) is an empirical response curve
which can be shown to correspond to an adsorption model in which chemical reaction rates
are drawn from a pseudo-Gaussian distribution. Peterson et al.’s experimental results
are indeed a good fit to the Sips isotherm, however their experiment differs from the
conditions of the hybridization of Affymetrix chips in one important aspect, namely the
hybridization temperature. The Peterson experiment was carried out at a hybridization
temperature of 20◦C, while Affymetrix microarrays are hybridized at 45◦C, which is
much closer to the duplex melting temperature. Furthermore, Peterson et al. found that
heating the hybridization buffer to 37◦C and then cooling back to 20◦C almost completely
removed any difference in equilibrium saturation intensities between PM and MM probes
at a temperature well below the melting temperature.

To determine whether the hyperbolic or Sips isotherm is more appropriate for the
Affymetrix spike-in data we have carried out a statistical analysis comparing the fits of
the MM data to both isotherms. Our results, summarized in the Appendix, show that for
the Affymetrix spike-in data the extra parameters involved in invoking the Sips isotherm
are not significant, and that a hyperbolic response function adequately describes the data.
We conclude that, at a hybridization temperature of 45◦C, the asymptotic response of
microarrays at high spike-in concentration is determined by a thermodynamic reduction
in saturation efficiency which is more pronounced for MM than for PM features.

Thermodynamic effects manifest themselves through the temperature dependence of
chemical rate constants. However, we have seen above that, irrespective of the values of
chemical rate constants, a single step Langmuir model erroneously predicts that features
will saturate at 100% efficiency, even in the presence of non-specific hybridization. In the
next section we propose an adsorption model which takes into account that hybridization
is a two step process involving an initial rate determining nucleation step. Our modified
Langmuir model correctly predicts that MM probes should saturate at a lower efficiency
than PM probes.

4. A solution to the saturation problem

The naive model leading to Eq. (3) assumes two processes, adsorption and desorption.
Since the probes are immobilized and spatially separated, it is reasonable to assume that
the desorption process should be an independent process from one probe to another.
The assumption that the backward desorption should occur at a rate proportional to the
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fraction θ of occupied probes therefore seems quite sound.
The assumption that the forward, adsorption process should occur at a rate that rises

linearly with RNA target concentration, however, is questionable. Because the target
molecules are mobile, and need to find their way to the probes, and given that duplex
formation takes a certain time, at a sufficiently high concentration one could expect
congestion at the chip surface. One way to model this is to take into account the time
taken for a probe-target duplex to form. Textbook descriptions of duplex formation (see,
for instance, Cantor and Schimmel (1980), pages 1215 to 1219) imply a two step process:
a slow rate determining step in which an initial two or three base pairs form, followed
by a fast ‘zipping-up’ step involving some, though not necessarily all, of the remaining
base pairs. The model we propose here assumes that only zipped-up duplexes survive
the washing of the chip and contribute to the measured fluorescence intensity.

4.1 Modified Langmuir model without non-specific hybridization

We first present our modified model without non-specific hybridization. We extend
the single step Langmuir model behind Eq. (3) to a modified model which acknowledges
that the forward, duplex forming, reaction involves two steps: a slow rate determining
step in which the first two or three base pairs form, followed by a fast step involving some
or all of the remaining base pairs. Denoting the probe and target molecules by P and T
respectively, the partially formed duplex after the rate determining step by PT∗, and the
completed target-probe duplex by PT, the hybridization process can be modelled by the
chemical reactions illustrated in Fig. 2.

Let the target concentration be x, the fraction of probes in a feature which have
formed a zipped up duplex PT be θ and the fraction which have formed an initiated
duplex PT∗ be ζ . The fraction of free single strand probes is then 1− θ − ζ . Reading off
the chemical rate equations from Fig. 2 gives

dζ

dt
= k1x(1 − θ − ζ) − (k−1 + k2)ζ, (17)

dθ

dt
= k2ζ − kbθ. (18)

At equilibrium, dζ/dt = 0, giving

ζ =
k1x(1 − θ)

k−1 + k2 + k1x
, (19)

and dθ/dt = 0, giving

kbθ = k2ζ =
kfx(1 − θ)

1 + kfx/k2

, (20)

where we have defined

kf =
k1k2

k−1 + k2
. (21)

Note that, for x small, Eq. (20) becomes the equilibrium form of the naive Langmuir
model of Eq. (3), that is, kf is the forward reaction rate constant in the limit of low target

9



Figure 2. Hybridization proceeding from probe plus target (P + T) to partially formed
duplex in which two or three bases pair (PT∗) to a zipped-up duplex (PT). k1, k−1, k2

and kb are chemical reaction rates. Only the zipped up duplexes PT are assumed to
survive the washing process and contribute to fluorescence intensity measurements.
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concentration. At higher x, Eq. (20) says that the forward reaction rate is corrected by
an effective Michaelis-Menton type law as the target concentration increases. Solving for
θ gives

θ = λ
x

x + KS

(22)

where we have further defined

λ =
k2

k2 + kb
, and KS = λ

kb

kf
. (23)

The important point to note is that, unlike the naive Langmuir model, at saturation
concentration x → ∞ the feature is not completely covered by zipped up probe-target
duplexes. Assuming the washing process removes the unformed duplexes PT∗, the mea-
sured fluorescence intensity is given in the absence of non-specific hybridization by the
analogue of Eq. (5),

y = a + bSθ = a + bSλ
x

x + KS
, (24)

where 0 < λ < 1 is the fraction of probes occupied by duplexes at saturation. As pointed
out by Dai et al. (2002), the experimental evidence is that the main difference between
PM and MM reaction rates is through the backward reaction rate, viz. kMM

b > kPM
b .

From Eq. (23), this implies λPM > λMM, and that, ignoring non-specific hybridization,
the asymptote a + bSλ of the isotherm is higher for PM than for MM. We next proceed
to include the effects of non-specific hybridization within the modified model.

4.2 Modified Langmuir model with non-specific hybridization

Following the notation of Section 2 we consider competition between a specific target
species T and a number of non-specific species Ti, and set

x = concentration of specific target RNA species T

zi = concentration of non-specific target RNA species Ti

θ = fraction of feature covered by specific duplexes PT

φi = fraction of feature covered by non-specific duplexes PTi

ζ = fraction of feature covered by specific unzipped duplexes PT∗

ηi = fraction of feature covered by non-specific unzipped duplexes PT∗

i

Φ = θ +
∑

j

φj + ζ +
∑

j

ηj

so that 1 − Φ is the fraction of the feature covered with single strand unmatched DNA
probes. We also assume chemical reactions analogous to those shown in Fig. 2 for each
non-specific species i with reaction rates k1i, k−1i, k2i and kbi. The complete set of rate
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equations is

dζ

dt
= k1x(1 − Φ) − (k−1 + k2)ζ,

dηi

dt
= k1izi(1 − Φ) − (k−1i + k2i)ηi,

dθ

dt
= k2ζ − kbθ,

dφi

dt
= k2iηi − kbiφi. (25)

At equilibrium dθ/dt = dφi/dt = dζ/dt = dηi/dt = 0, and the rate equations solve to
give the isotherms

θ =
λx/KS

1 + x/KS +
∑

j zj/Kj
,

φi =
λizi/Ki

1 + x/KS +
∑

j zj/Kj
, (26)

where

KS = λ
kb

kf
, Ki = λi

kbi

kfi
, (27)

λ =
k2

k2 + kb
, λi =

k2i

k2i + kbi
, (28)

kf =
k1k2

k−1 + k2
, kfi =

k1ik2i

k−1i + k2i
. (29)

Assuming as before that only zipped up duplexes PT and PTi contribute to the measured
fluorescence intensity, we again have

y = a + bSθ +
∑

i

biφi

= y0 + b
x

x + K
, (30)

where now

y0 = a + A (31)

b = λbS − A (32)

K = KSB, (33)

and

A =
1

B

∑

i

biλizi

Ki
(34)

B = 1 +
∑

i

zi

Ki

, (35)
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and λ, KS, λi and Ki are given in terms of the rate constants by Eqs. (27) to (29).
We see that the hyperbolic form of Eq.(1) is retained in Eq.(30), but with parameters

amended to account for non-specific hybridization and the effects of congestion at the
chip surface affecting the saturation asymptote. All non-specific hybridization effects are
contained in the parameters A and B. The parameter λ is again the fraction of the
feature covered by the specific PT duplexes at saturation, and if kMM

b > kPM
b , Eq. (28)

implies 0 < λMM < λPM. In other words, the asymptote y(∞) = y0 + b = a+λbS is lower
for MM than for PM isotherms.

4.3 Modified Langmuir model with non-specific hybridization and partial zippering

Finally we describe the full version of our model which allows for only partial zippering
of duplexes. In the previous section we treated the zipped-up duplex PT as a single
configuration. A more realistic model is to consider a distribution of configurations PTα,
α = 1, 2, . . ., where the index α labels all possible partial zipperings, i.e. configurations
in which only bases m to n, where 1 ≤ m < n ≤ 25, are bound (Deutsch et al., 2004).

Define the forward zipping up reaction rate PT∗ → PTα to be pαk2 where
∑

α pα = 1,
and the backward decay rate for the process PTα → P+T to be kbα. The third equation
in the set Eq. (25) is then replaced by

dθα

dt
= pαk2ζ − kbαθα, α = 1, 2, . . . (36)

the remaining three equations being unchanged. It is straightforward to see that, in the
equilibrium regime in which all time derivatives are set to zero, we recover all the results
of the previous section provided we define the total fraction covered by zipped duplexes
to be θ =

∑

α θα and define an effective backward decay rate kb by

1

kb

=
∑

α

pα

kbα

. (37)

More specifically, the hyperbolic isotherm solution of Eqs. (27) to (35) remains intact.
Note also that, with kf as defined by Eq.(29), one easily obtains from the equilibrium

version of Eqs. (25) and (36) that

kbαθα = pαkfx(1 − Φ). (38)

That is, pαkf is the effective forward reaction rate at equilibrium for the process P+T →

PTα. Standard physical chemistry then gives the following relationship between the
effective equilibrium forward and backward reaction rates and the free energies ∆Gα of
the bound duplexes PTα relative to the unbound state P + T:

kf

kb
=

∑

α

pαkf

kbα
= C

∑

α

e−∆Gα/(RT ), (39)

where T is absolute temperature, R = 1.987 calK−1mol−1 is the gas constant, and
the pre-exponential factor C is a measure of the frequency of encounters of reactants,
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independent of their energy (Atkins, 2000). Our convention is such that ∆G < 0 for a
bound state.

From Eqs. (31) and (32) we also have

λ =
y0 + b − a

bS
. (40)

Combining Eqs. (27), (33) and (40) then gives

kf

kb
=

B(y0 + b − a)

KbS
. (41)

Eqs. (39) and (41) then imply the following relationship between the isotherm param-
eters y0, b and K, the sequence specific parameters bS and ∆Gα and the non-specific
hybridization parameter B:

B(y0 + b − a)

KbS
= C

∑

α

e−∆Gα/(RT ). (42)

5. Comparison between PM and MM

A test of the theory proposed in the previous section is that it should be quantitatively
consistent with fits to the Affymetrix spike-in data. The existence of MM features pro-
vides a convenient set of data in which only a single aspect of the experimental conditions,
namely the central base of a probe sequence, has been altered and the resultant change in
response measured. Below we compare the predictions of our modified Langmuir model
with the observed differences between PM and MM gene expression measurements. As
before we consider a neighbouring (PM,MM) pair of features and use the superscripts
PM and MM to indicate quantities belonging to elements of the pair.

Because, as argued in Section 3, the parameters a and bS are common to PM and
MM, we immediately have from Eq. (42)

(yMM
0 + bMM − a)/KMM

(yPM
0 + bPM − a)/KPM

=
BPM

BMM

ZMM

ZPM
, (43)

where
ZPM =

∑

α

e−∆GPM
α

/(RT ), ZMM =
∑

α

e−∆GMM
α

/(RT ). (44)

The left hand side of Eq. (43) contains only the parameters y0, b and K which were
estimated in our previous statistical analysis, and the physical background a which might
be estimated for instance by taking the lowest fitted value of y0 over the data set.

To estimate the right hand side, we split ZPM into three pieces

ZPM = U + V + W, (45)

where U = a sum over duplex configurations bound within the set of bases not including
the middle base, i.e. within the set of bases 1 to 12 or the set of bases 14 to 25; V =
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a sum over duplex configurations bound over a stretch which terminates at the middle
base; and W = a sum over the remaining duplex configurations, i.e. those which straddle
the middle base. Binding energies ∆G of RNA/DNA duplexes can be estimated using a
nearest neighbour stacking model (Sugimoto et al., 1995). In this model the duplex free
binding energy is calculated as the sum of an initiation energy plus a contribution from
each nearest neighbour pair of bases along the length of the duplex, while mismatches can
be accounted for by including a contribution from the triplet straddling the mismatched
base (Sugimoto et al., 2000). A consequence of the stacking model is that the free energy
of a duplex configuration which is not bound at the middle base will be the same for
a PM probe as for an MM probe. A further consequence is that the free energy of
a configuration straddling the middle base will differ between PM and MM by a fixed
amount ∆∆G = ∆GMM

α − ∆GPM
α for all such configurations α. Also, there will be no

MM configurations which terminate at the middle base. It can be shown from these
considerations that

ZMM = U + We−∆∆G/(RT ). (46)

With some rearrangement, Eq. (43) then becomes

ln
KMM

yMM
0 + bMM − a

− ln
KPM

yPM
0 + bPM − a

=
∆∆G

RT
+ ln

[

(

1 +
U + V

W

) (

1 +
Ue∆∆G/(RT )

W

)−1
]

+ ln
BMM

BPM
. (47)

As a reasonable first approximation, one might presume that ∆∆G should only de-
pend on the middle letter of the probe sequence. If this were the case, a log-log plot of
K/(y0 + b − a) for MM against PM over a range of probe sequences would have slope 1
and offset dependent only on the middle letter, plus corrections for the final two terms
in Eq (47). The first correction term is due to partial zippering and the second from
non-specific hybridization.

In Fig. 3 is shown a plot of ln[K/(y0 + b − a)] for MM against PM. The parameters
y0, b and K are estimated from fits of the Langmuir isotherm Eq. (1) to data from the
12 genes of the Affymetrix spike-in experiment. The physical background a is chosen to
have a value of 85, which is slightly less than the minimum over all fits of y0, though the
plot changes little over the range 60 < a < 100. Each point corresponds to a different
PM probe sequence, and colours indicate the middle base of the PM sequence. The four
coloured lines are linear regressions to the model

X − Y = β1(X + Y ) + β0 (48)

where (X, Y ) are the coordinates of the plotted points and β0, β1 are fitted parameters.
The fitting function is designed to be linear and symmetric with respect to the X and Y
axes, that is, it is a standard least squares fit with respect to axes set at 45 degrees to
the original axes. The lines are very close to parallel, as predicted, but the slope is far
from 1. The fitted slopes (1 − β1)/(1 + β1) are

A: 1.498, C: 1.493, G: 1.515, T: 1.530. (49)
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The dashed lines join constant values of the dimensionless free energy difference ∆∆G/RT .
We observe an increase in the offset as we move from the more strongly bound duplexes
(small K/(y0 + b − a)) to the weakly bound duplexes (large K/(y0 + b − a)).

Apart from this overall change in offset, the ordering of the offset for the four middle
bases is as expected. The main difference in free energies should be between the strong
H-bond nucleotides (C,G) and weak H-bond nucleotides (A,T), and indeed the C and
G fits come out above the A and T curves. On top of the H-bond shift, we expect a
difference between the smaller pyramidine nucleotide (C,T) and larger purine nucleotide
(G,A) free energy difference because replacing a small nucleotide with a larger one will
make the duplex less stable, whereas replacing a larger one by a smaller one will simply
leave a dangling bond. From the plot we see that the C fit is shifted upwards relative to
the G fit, and the T shifted by a roughly equal amount upwards from A.

By comparison, we show in Fig. 4 the plot obtained from the equivalent exercise for the
naive Langmuir model, in which the analogue of Eq. (47) is simply (Hekstra et al., 2003)

ln KMM − ln KPM =
∆∆G

RT
. (50)

The slope is closer to 1, but the four curves are not parallel, that is, there seems to be
no clear dependence on the middle letter. Furthermore, the points are more broadly
scattered, and some points correspond to negative values of ∆∆G, entailing the unlikely
prediction that there are probes for which the mismatch duplex is more stable than the
perfect match.

Returning to Fig. 3, we address whether the two correction terms in Eq. (47) can ac-
count for the increase in offset from left to right across the plot. The first of these, the ef-
fect of partial zippering, can be estimated from the RNA/DNA stacking parameters mea-
sured by Sugimoto et al. (1995). Using an algorithm described in (Deutsch et al., 2004)
to calculate sums over binding configurations, one finds that for the sequences occurring
in the Affymetrix spike-in experiment, U/W and V/W both lie between about 10−4 and
10−10 with a median of about 10−7. Expanding the log, one sees that the first correction
term is first order in U/W and V/W , which is too small to account for the slope of
the fits in Fig. 3. The second correction term, dependent on the ratio of non-specific hy-
bridization parameters B defined by Eq. (35) is unfortunately harder to estimate. Ideally
what is needed is a spike-in experiment without non-specific hybridization, in which case
BMM and BPM could be measured from the change in the parameter K in the presence of
non-specific RNA via Eq. (33). In the absence of such data we leave open the possibility
that the final term in Eq. (47) can explain the slope of the fits in Fig. 3, or alternatively
imply a more appropriate dependence than the linear form (48) employed above.

6. Discussion and Conclusions

An understanding of the physical processes driving hybridization is essential if the de-
sign of expression measures is to advance to a point where target concentration can be
measured in absolute terms. In this paper have presented a model of hybridization at
the surface of an oligonucleotide microarray based on Langmuir adsorption theory, which
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Figure 3. Plot comparing the two terms on the left hand side of Eq. (47). Colours
indicate the middle base of the PM sequence. Our modified Langmuir theory predicts
that probe sequences with the same difference in free binding energy between MM and
PM duplexes will lie along the lines parallel to the diagonal with possible corrections for
partial zippering and non-specific hybridization. At a hybridization temperature of 45◦C,
∆∆G/RT = 1 equates to a binding energy of 0.632 kcal mol−1.
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Figure 4. Plot comparing the two terms on the left hand side of Eq. (50). Colours
indicate the middle base of the PM sequence.
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takes into account 1) the effects of non-specific hybridization, 2) that DNA/RNA duplex
formation proceeds via a slow initiation step followed by a rapid zipping-up step, and 3) a
thermal distribution of partially zipped up RNA/DNA duplexes. We find that the hyper-
bolic form Eq. (1) of the Langmuir isotherm is maintained, in agreement with fits to the
Affymetrix spike-in experiment. In Sections 4.2 and 4.3 we give the isotherm parameters
in terms of more fundamental parameters driving the physical processes. One success of
this model over previous models is that it is able to account for the clear difference in
response of PM and MM features at saturation concentrations.

We have also made some advance towards establishing a relationship between the
respective adsorption isotherm parameters of PM and MM probes. Knowing how these
parameters are related can only improve the interpretation of microarray data, given that
current expression measures either erroneously attempt to subtract the MM signal as a
measure of nonspecific binding or ignore the MM signal completely. According to our
model, Eq. (47) relates isotherm parameters of the MM and PM response, to the differ-
ence in free binding energy ∆∆G between a PM and an MM DNA/RNA duplex plus a
possible correction arising from non-specific hybridization from non-specific binding. We
have attempted, with limited success, a comparison of the fitted hyperbolic isotherms to
Eq. (47) assuming ∆∆G to be a function of the middle base. We are unfortunately unable
to determine the magnitude of the non-specific hybridization correction term in Eq. (47)
with the available data. Further progress could be made if data were available from
a repeat of the spike-in experiment without non-specific hybridization from a complex
background. Furthermore, there is experimental evidence (Sugimoto et al., 2000) that
∆∆G is strongly dependent not only on the middle base, but on the complete triplet
of bases straddling the middle base. However there is insufficient data from the current
spike-in experiment to test Eq. (47) against the full set of 64 possible triplets.

Ultimately one would wish to be able to determine isotherm parameters solely from
probe sequences. We see the current work as leading to a model not dissimilar in flavour
to the positional dependent nearest neighour model of Zhang et al. (2003), or the recent
thermodynamic partial zippering model of Deutsch et al. (2004). Examination of more
extensive spike-in experiments will be the subject of future research.

Appendix

In this appendix we carry out a statistical analysis of fits to the Langmuir isotherm,
Eq. (1), and the Sips isotherm

y = y0 + b
xγ

xγ + Kγ
, (51)

to determine which model is the better fit to the MM data of the Affymetrix spike-in
experiment. The method used is described in detail in an earlier paper which compares fits
of the PM data to a number of isotherm models (Burden et al., submitted for publication).

The stochastic component of the fluorescence intensity y is assumed to be drawn from
a gamma distribution. The data is fitted using the generalized linear model formalism as
defined in McCullagh and Nelder (1989), in which the negative log likelihood of the fit, or
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Table 1
Comparisons of fits to Langmuir and Sips isotherms. ∆r is the decrease in residual degrees of

freedom for each gene and ∆Dscaled is the corresponding scaled decrease in deviance.

Gene ∆r ∆Dscaled omitted probes

37777 at 14 6.43 3, 9

684 at 12 3.62 3, 5, 7, 8

1597 at 12 14.56 9, 11, 14, 15

38734 at 9 10.11 1, 3, 4, 9, 11, 12, 6

39058 at 5 11.34 1, 2, 3, 5, 6, 7, 9, 10, 12, 14, 16

36311 at 13 3.46 7, 8, 14

1024 at 16 15.19

36202 at 15 6.18 6

36085 at 15 7.29 13

40322 at 16 39.58

1091 at 14 3.83 1, 2

1708 at 12 2.36 11, 12, 13, 14

All genes 153 133.80

deviance, is minimised over the parameters y0, b, K and, in the case of the Sips isotherm,
also γ. To compare fits to the Langmuir and Sips models with rL and rS residual degrees
of freedom and deviances DL and DS respectively, we use the scaled deviance

∆Dscaled = (DL − DS)
rS

DS
. (52)

Note that rL > rS >> 1. To evaluate the null hypothesis, γ = 1, ∆Dscaled can be com-
pared with a chi-squared distribution with ∆r = rL−rS degrees of freedom (McCullagh and Nelder, 1989).

We were able to obtain fits with positive parameter values to both the Langmuir
and Sips isotherms for about 80% of the probes. For most of the remaining cases the
MM response was too small to provide a useful fit (see probes 3 and 9 in Fig. 1 and
Table 1 for instance). Results for the scaled deviance are shown in Table 1. The total
deviance of 133.8 lies at the 13th percentile of a chi-squared distribution with 153 degrees
of freedom, showing no reason to consider a more complex model that the Langmuir
isotherm. Finally, a histogram of the fitted values of the Sips parameter, Fig. 5, shows
that the Sips parameter is symmetrically distributed about γ = 1, as expected if the
Langmuir isotherm is the more accurate model.
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Figure 5. Histogram of fitted values of the Sips parameter γ for the MM data.
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